Kepentingan Bioinformatik Dalam Analisa Genomik Ke Arah Perubatan Jitu Untuk Covid-19
DOI:
https://doi.org/10.53840/ejpi.v11i2.99Keywords:
bioinformatics, genomic medicine, healthAbstract
Genomic medicine is the use of an individual's genomic information to benefit the decision making in clinical treatment procedures such as disease diagnosis, prognosis, and therapy. As a result, genomic medicine has implications in cancer, pharmacology, rare and unknown diseases, and infectious diseases. With the advent of high - resolution and rapid genetic testing, thousands of genes have been able to be identified in complex biological samples. Bioinformatics is a crucial step in dealing with big data that may represent a large number of genes or genetic information that are significant in medical and health sciences research. Consequently, bioinformatics has become an essential component of clinical laboratories for the creation, processing, preservation, and interpretation of data from molecular genetic testing. This article provides an overview of the bioinformatics ideas and aspects used in genomic testing. Furthermore, we explore the application of bioinformatics in cancer research, as well as the implications of bioinformatics for the COVID-19 pandemic. Integrating multidisciplinary knowledge is important for overcoming the challenges of acquiring bioinformatics data suited for genomic medicine.
Downloads
References
Banwait, J. K., & Bastola, D. R. (2015). Contribution of bioinformatics prediction in microRNA-based cancer therapeutics. Advanced Drug Delivery Reviews, 81, 94–103. https://doi.org/10.1016/j.addr.2014.10.030
Chatterjee, R., Ghosh, M., Sahoo, S., Padhi, S., Misra, N., Raina, V., Suar, M., & Son, Y. O. (2021). Next-generation bioinformatics approaches and resources for coronavirus vaccine discovery and development—a perspective review. Vaccines, 9(8), 1–17. https://doi.org/10.3390/vaccines9080812
Council, N. R. (2011). Guide for the Care and Use of Laboratory Animals: Eighth Edition. The National Academies Press. https://doi.org/10.17226/12910
Francis S. Collins, Eric D. Green, Alan E. Guttmacher, & Mark S. Guyer. (2003). A vision for the future of genomics research. Nature, 422(April), 835–847.
Hernández Cordero, A. I., Li, X., Yang, C. X., Milne, S., Bossé, Y., Joubert, P., Timens, W., van den Berge, M., Nickle, D., Hao, K., & Sin, D. D. (2020). Gene expression network analysis provides potential targets against SARS-CoV-2. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-78818-w
Hofker, M. H., Fu, J., & Wijmenga, C. (2014). The genome revolution and its role in understanding complex diseases. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1842(10), 1889–1895. https://doi.org/10.1016/j.bbadis.2014.05.002
Hufsky, F., Lamkiewicz, K., Almeida, A., Aouacheria, A., Arighi, C., Bateman, A., Baumbach, J., Beerenwinkel, N., Brandt, C., Cacciabue, M., Chuguransky, S., Drechsel, O., Finn, R. D., Fritz, A., Fuchs, S., Hattab, G., Hauschild, A. C., Heider, D., Hoffmann, M., … Marz, M. (2021). Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics, 22(2), 642–663. https://doi.org/10.1093/bib/bbaa232
Ishida, C., & Gupta, V. (2022). Genetics, Molecular Testing.
Li, J., Chen, H., Wang, Y., Chen, M.-J. M., & Liang, H. (2021). Next-Generation Analytics for Omics Data. Cancer Cell, 39(1), 3–6. https://doi.org/10.1016/j.ccell.2020.09.002
Li, X., Yu, J., Zhang, Z., Ren, J., Peluffo, A. E., Zhang, W., Zhao, Y., Wu, J., Yan, K., Cohen, D., & Wang, W. (2021). Network bioinformatics analysis provides insight into drug repurposing for COVID-19. Medicine in Drug Discovery, 10, 100090. https://doi.org/10.1016/j.medidd.2021.100090
Orlov, Y. L., Baranova, A. V., & Tatarinova, T. V. (2020). Bioinformatics methods in medical genetics and genomics. International Journal of Molecular Sciences, 21(17), 1–5. https://doi.org/10.3390/ijms21176224
Phillips, K. A., Douglas, M. P., Wordsworth, S., Buchanan, J., & Marshall, D. A. (2021). Availability and funding of clinical genomic sequencing globally. BMJ Global Health, 6(2), 1–8. https://doi.org/10.1136/bmjgh-2020-004415
Roth, S. C. (2019). What is genomic medicine? Journal of the Medical Library Association, 107(3), 442–448. https://doi.org/10.5195/jmla.2019.604
Sadat, S. M., Aghadadeghi, M. R., Yousefi, M., Khodaei, A., Sadat Larijani, M., & Bahramali, G. (2021). Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19. Molecular Biotechnology, 63(5), 389–409. https://doi.org/10.1007/s12033-021-00303-0
Wang, T., Zhao, M., Ye, P., Wang, Q., & Zhao, Y. (2021). Integrated Bioinformatics Analysis for the Screening of Associated Pathways and Therapeutic Drugs in Coronavirus Disease 2019. Archives of Medical Research, 52(3), 304–310. https://doi.org/10.1016/j.arcmed.2020.11.009
Zhang, D., Zhang, T., Liu, S., Sun, D., DIng, S., Cheng, X., Cai, P., Ren, A., Han, M., Liu, D., Jia, C., Gong, L., Zhang, R., Xing, H., Tu, W., Chen, J., & Hu, Q. N. (2021). SARS2020: An integrated platform for identification of novel coronavirus by a consensus sequence-function model. Bioinformatics, 37(8), 1182–1183. https://doi.org/10.1093/bioinformatics/btaa767
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 e-Jurnal Penyelidikan dan Inovasi
This work is licensed under a Creative Commons Attribution 4.0 International License.